NASA/CR-2001-211230
ICASE Report No. 2001-29

The Solution of Radiation Transport Equations with
Adaptive Finite Elements

Linda Stals
Old Dominion University, Norfolk, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NAS1-97046

October 2001

THE SOLUTION OF RADIATION TRANSPORT EQUATIONS WITH ADAPTIVE
FINITE ELEMENTS*

LINDA STALS?

Abstract. We compare the performance of an inexact Newton-multigrid method and Full Approximation
Storage multigrid when solving radiation transport equations. We also present an adaptive refinement
algorithm and explore its impact on the solution of such equations.

Key words. FAS, multigrid, Newton method, radiation transport

Subject classification. Computer Science

1. Introduction. Interest in the solution of radiation transport equations stems from the modeling
of applications found in, for example, combustion, astrophysics and laser fusion. However, features such as
strong nonlinearities and large jumps in the coefficients makes these equations difficult to solve and they
can consume a lot of computational resources if efficient solution techniques are not used. Two examples
of efficient solution methods are the inexact Newton-multigrid method and the Full Approximation Storage
multigrid (FAS); both of which are nonlinear multigrid techniques.

The solution of radiation transport equations usually has a wave front. Adaptively refined grids are well
suited to capture the information along the front and thus give high resolution results.

In this paper we compare the performance of an inexact Newton-multigrid method and the FAS method
for the solution of time-dependent radiation transport equations. We also explore the use of adaptive

refinement techniques.

2. Physical Model. Under certain assumptions, such as isotropic radiation, optically thick material

and temperature equilibrium, radiation transport may be modeled by the equation:

(2.1) %—f —V.(D(E)VE)=0 on Qx I,

where E is the radiation energy.

More physically meaningful models of radiation transport are represented by systems of equations like
those described in [4, 12, 14]; however, Equation (2.1) contains many of the features seen in the more general
system, such as strong nonlinearities and large jumps in the coefficients, and therefore is a good place to
start our investigation into different solution techniques.

One definition of the diffusivity term, D(E), is:

(2.2) D(E) = Dy(E) = Z°EP,

with @ < 0,0 < 8 < 1. Typically a is taken to be -1 or -3 while 3 is taken to be 1/4 or 3/4. Z is the atomic
mass number and may vary within the domain to reflect inhomogeneities in the material. The constant 3

controls the strength of the nonlinearity while « affects the size of the jumps in the coefficients.

*This research was supported by the U.S. Department of Energy under the ASCI ASAP program (subcontract B347882
from the Lawrence Livermore National Laboratory) and by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-97046 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia

23681-2199, USA.
fDepartment of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA and ICASE, NASA Langley

Res. Ctr, Hampton, VA 23681-2199, USA.

F1G. 2.1. The values for the atomic mass number Z depend on the topology of the material. In our model problem, we

define Z as shown above.

The definition of D(E) given in Equation (2.2) may produce results that show the energy moving through
the system at a rate faster than the speed of light. Consequently a flux limiter is included to slow down the

movement and the diffusivity term is rewritten as:

1 |VE|>—1

(23) D(E) = Da(B) = (o + g

The domain, €, is a square domain ([0, 1] x [0,1]) with the following mixture of Newton and Neumann

boundary conditions;

OE/dn =0 on 'y x I,
n'D(E)VE+E/2=2 onTg, x1I,
nTD(E)’VE+E/2=0 onTp xI,

where I'y represents the lines y = 0 and y = 1, I', is the line = 0 and I'p, is the line x = 1, n is the
outward unit normal and [is the time interval.
In our model problem we take Z to be 10.0 except in the following regions: /(z —0.5)2 + (y — 0.5)2 <
0.125, y < 05—z and y > 1.75 — x where Z = 100, Z = 20 and Z = 50 respectively. See Figure 2.1.
Additional papers that look at these equations include [3, 4, 5, 7, 12, 16] and their accompanying

references. The radiation transport model described here is very similar to that presented in [7, 12, 16],
except that we use the finite element method instead of the finite difference method, as this more readily

allows the use of adaptive refinement.

3. Discretization. To solve Equation (2.1), we use the following variational formulation, similar to
that given in [6]: Find u(t) € V = H}(Q2), t € I, such that

(3.1) (a(t),v)a + a(D(u(t));u(t),v)a =< g,v >s0 Yv eV,

where

a(D(U);an)QZ/D(U)VUdem+/ ﬂqu-/ %d;c,
Q Tr, 2 e, 2

<v,w >3Q:/ vw dr
El9)

and

0 only xI,
g = 2 onlg x1I,
0 onlp xI.

The time derivative is dealt with through the use of either an implicit Euler or the Crank-Nicolson
method.

4. Node-Edge Data Structure. A node-edge data structure similar to the one described in [15, 17,
18, 20] is used to store the finite element grid. In this data structure, a grid M™ is defined in terms of its
geometrical, topological and algebraic attributes. The geometrical and topological attributes are simply the
set of nodes, N™, and edges, £™. The stiffness matrix is associated with the algebraic attribute and is stored
in the set of connections, C}', as a graph.

The node-edge data structure does not explicitly contain any information about the elements in the grid.
Consequently, the same data structure can be used to store triangular, quadrilateral or tetrahedral grids.
Information about the elements may be extracted by looping through the nodes and edges if necessary. The
advantage of such a data structure is its flexibility. Although we concentrate on serial results in this paper,
the code has been implemented in parallel and those results will be presented in a future paper.

We use a refinement algorithm to build the sequence of coarse grids needed by our solution techniques
(nonlinear multigrid methods). That is, the new, refined grid becomes the fine grid in the multigrid algorithm
and the old grid(s) is kept as the coarse grid(s). In terms of the notation defined above, this nested sequence
of grids is represented by M ¢ M2 C ... C M™. A more thorough description of this refinement algorithm
is given in Section 6.

Information is moved from the coarse grid M™~! to the fine grid M™ by the linear interpolation matrix
I ;. The restriction matrix I ! is defined to be the transpose of the interpolation matrix and moves the
information from the fine grid M™ to the coarse grid M™~!. This extra algebraic information is stored in
the table of connections. That is, if C*, C§ and C}' hold the interpolation, restriction and stiffness matrices,
respectively, then the algebraic information for a multigrid grid is the set of connections, C™, where

C™=CFUCy UCE,

for1l<m<mn,C'=CLUC} and C" =C UCR.
Finally, the grid M™ is given by M™ = {N'™ ™ C™}.

5. Solution Techniques. We compare two different solution techniques: the inexact Newton-multigrid
method and the Full Approximation Storage multigrid (FAS). Note that Newton’s method relies on a global

linearization sweep whereas the FAS scheme uses local linearizations.

5.1. Inexact Newton-Multigrid. Our implementation is a standard implementation of Newton’s
method, but we have included a brief description below to aid our discussion of the numerical results.
Suppose we want to solve the nonlinear system N[x] = b where N is a nonlinear operator. Let F[x] =

b — N[x] and take an initial guess x¢. A high level algorithm for the inexact Newton-multigrid method is;

While |F[x;]| > a given tolerance
Calculate the Jacobian F’(xy)
Move the Jacobian down the grid levels

Solve the linear system F'(x;)y = —F[x;] by using the multigrid method

Find the scaling factor v
Set X1 = 7y + Xg

The method is inexact because the linear system is not solved exactly; we just require that
¥ [xx] + F'(xx)yl| < ||F[x]|/10.
The scaling factor is defined as
1
v =min{1,1/[c[]2}*,

where ¢; = y;/(Xx)i- It is necessary to include a scaling factor, particularly when solving the time-dependent
problems, as the solution changes rapidly near wave fronts. This is similar to the scaling factor defined in
[16].

When using the multigrid algorithm to solve a linear system A™y = f" defined on a fine grid, we need
to ‘move’ the system down to the coarse grids. One way of doing this is to set

(51) A™m—1 — Im—lAmIm

m—1

where A™ (1 < m < n) is the matrix defined on the grid M™, and I™~! and I™_, are the interpolation
and restriction matrices introduced in Section 4. The ‘Move the Jacobian down the grid levels’ line in the
above algorithm means that we define the coarse grid matrices in this way.

5.2. FAS Scheme. A high level algorithm of the FAS scheme is given below. A more thorough
description can be found in, for example, [1, 2, 8].

While |F[x;]| > a given tolerance
Apply a nonlinear smoother y; times to the system N™[x™] = b™
If not at coarsest grid
Compute the defect d™ = b™ — N™[x™]
Restrict the defect d™~! = Im~1d™
Restrict the current approximation x™~1! = /I\%_lxm
Compute the approximation to
Ny = e NP)
by calling the FAS Scheme again using x™~! as an initial guess
Calculate the correction X™~! = ym~1 — xm—1
Interpolate the correction X™ = Im_ xm~—1
Correct the current approximation x™ = x™ + X™

Apply a nonlinear smoother ps times to the system N™[x™] = b™

Notice that the Jacobian matrix is not formed, so the FAS scheme requires less storage than Newton’s
method.

The matrix /I\ﬂfl is a restriction operator, but not necessarily the same as I '. In this work we used
injection for the operation.

The results presented in this paper were obtained by using a nonlinear SOR method [13] as a smoother.
The linearization phase is incorporated in the smoother by applying a point-Newton method to a given grid
node after ‘fixing’ the value at all of the other nodes. To apply the point Newton method, the diffusivity
term (and its derivative) must be evaluated, which is expensive.

6. Grid Refinement. The refinement algorithm is based on the newest node bisection method. In this
method, the triangles are subdivided by bisecting the edges that sit opposite the newest nodes. For example,
if the dark points in Figure 6.1 are the newest nodes, then the resulting grid after one and two refinement

sweeps are shown in Figure 6.2.

7 8 9
& 2
5
6 4
< 19}
1 5 3

Fi1G. 6.1. Ezample grid that may be stored in the node-edge data structure.

B o B o5 g—e—s—e—»

B B ¢ 3
B B d

B B ¢ 3

&« B B Y e o

FiG. 6.2. Resulting grid after two non-adaptive refinement sweeps of the grid in Figure 6.1. Note that the edges have been
bisected along the base edges marked by a B.

In terms of the node-edge data structure, it is easier to work with the base edges rather then the newest
nodes, where the base edges are the edges that sit opposite the newest nodes, such as those marked by B in

Figure 6.1.

vy

F1G. 6.3. Result after bisecting the grid in Figure 6.1 along one of the base edges.

6.1. Controlling the Order of Refinement. The most difficult part of the adaptive refinement
routine is ensuring that the edges are bisected in the correct order to avoid long thin triangles. For example,
suppose a triangle in Figure 6.1 is refined along one of the base edges as shown in Figure 6.3; then several
of the triangles in the resulting grid will have two base edges. If the edges By and Bj are bisected during
the next refinement sweep, then it is not clear which base edge should be bisected first. If the wrong edge is
chosen, as in Figure 6.4, we get long thin triangles which reduce the efficiency of the grid.

To determine the order in which to bisect the edges, we use a method similar to Mitchell’s Compatibly
Divisible Triangles [9, 10, 11].

We define an interface-base edge to be an edge that sits between two different levels of refinement. For

example, in Figure 6.5, we have redrawn the grid from Figure 6.3 and marked the interface-base edges by

F1G. 6.4. If the wrong edge (B1) is bisected first, then the triangles can become long and thin.

F1G. 6.5. The interface-base edges marked by I sit between two different levels of refinement. Once an interface-base edge
has been updated to a base edge, it may be bisected.

an I. The neighboring coarse triangles must be refined before the interface-base edges are bisected. So Bs in
Figure 6.5 must be bisected before I;. Note that it may be necessary to refine more then one neighboring
triangle. For example, to bisect edge I;; in Figure 6.5, edges B4 and Is should be bisected first.

6.2. Error Indicator (Stationary Problem). The idea behind our error indicator is to determine if
the addition of a new node will significantly reduce the error.

Let v™ be the current approximation to the system of equations N™[u™] = b™, where N™ and b™ are
the stiffness matrix and load vector defined on the current grid, M™. Then, each base edge and interface-
base edge is assigned an error indicator which is equal to a weighted residual calculated at its midpoint.
That is, if node 4 is the midpoint of an edge then the error indicator e™ assigned to that edge is:

(6 1) e™ = L ,
N%+1[Im+lvm]

where

I,m—}-l — bm+1 _ Nm—i—l[Iz—va]_

N™+1 and b™*! are the resulting stiffness matrix and load vector that would result if the edge was
bisected at node i to form a new set of triangles. Note that it is not necessary to construct the whole
stiffness matrix (or load vector); we only need the row corresponding to node 3.

The motivation behind the error indicator is the question: how much will the error be reduced if we
add node i? In regions of the domain where the solution is well approximated by the coarse grid we would

expect the residual r™+!

to be small; in other regions where the solution is rapidly changing, and not well
approximated by the coarse grid, the residual will be large. We divide by N;’;.“[Im"'lvm] to normalize the
residual.

This error indicator is similar to the error indicator described by Mitchell [9, 10, 11], Riide [15] or Villegas

[21].

6.3. Moving Grids. When modeling non-stationary problems it is advantageous to adjust the shape
of the grid to match the movement of the wave front.

One approach to building such grids is to first de-refine the grid and then re-refine it to take the movement
of the wave front into account. By noting that we store a sequence of nested grids, not just a single FEM
grid, we are able to implement a very cheap de-refinement procedure. We simply shuffle the grid up one
level, i.e. set M™ to M™ ! where M™ is the de-refined grid. The interpolation and restriction information
at the coarsest and finest grids has to be updated, but otherwise this is a simple copy. Once all of the levels
have been updated, we can apply the refinement algorithm described above.

6.4. Error Indicator (Non-Stationary Problem). The next issue is how to calculate the error
indicator when taking the time derivative into account. To calculate the indicator at the next time-step, we
need an approximation of the solution at that time-step. Applying an implicit algorithm to approximate the
solution is cost-prohibitive, so we use an explicit method instead (we only use an explicit method to find the
error indicator; once the grid has been refined, we use an implicit method to calculate the solution). Recall
that the explicit Euler method is

M™5™ = M™v™ + At(b™ — N™[v™]),

where M™ is the mass matrix, v"™ is the solution at the current time-step, v is the solution at the next
time-step and At is the step size. Based on this equation we then define the error indicator for non-stationary
problems to be:

r;""'l ’
(Mn +1)1/4
rmtl = gmtl _ Mm"'llz"'l\’rm,

(6.2) em =

g = Tt (M 4 Ad(b™ — N™[v"])

Note that this indicator only needs to evaluate N once on the original de-refined grid, to form the
right-hand-side, and is thus a lot cheaper than the indicator used for the stationary problem.

Figures 6.6, 6.7 and 6.8 show examples of the moving grid. To obtain these examples we set o = —1,
B = 1/4. The values of Z are as given in Figure 2.1 and D(E) = D;(FE). The step size is 0.5/32, and the
figures show the results at time step 10, 20 and 30 respectively. There is an increase in the number of nodes
over time, however this is consistent with the shape of the solution. The indicator should pick up the regions
where the solution is changing rapidly, which it does.

7. Results. We ran all of the test problems on a Beowulf cluster consisting of 400 MHz Pentium II
processors with 384 MB of 100 MHz RAM. There are 32 such CPU nodes available in the cluster. Further

particulars of this machine can be found at http://www.icase.edu/.

7.1. Solution of Stationary Problem. To better understand the behavior of the two nonlinear

multigrid methods we firstly considered the stationary problem.

7.1.1. Test Problems. We looked at four different test problems, low, low J, high and high J.

In the first two examples, low and low J, we set & = —1 and § = 1/4. The difference between the two
examples is in the definition of the atomic mass number Z. In low Z is fixed at 10 throughout the whole
domain, but in low J the values for Z vary as shown in Figure 2.1. Figure 7.1 gives example solutions of
low and low J.

L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Fi1G. 6.6. Ezample grid at time step 10, contains 2868 nodes.

0

. L L L L
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Fi1G. 6.7. Ezample grid at time step 20, contains 4390 nodes.

The other two examples, high and high J, are much more difficult to solve. In this case the nonlinearity
and jump size were increased to & = —3 and 3 = 3/4. Once again, Z is fixed at 10 for high, but is spatially
dependent for high J. Figure 7.2 shows example solutions of high and high J.

In all of the test problems the flux limiter was included in the definition of the diffusivity term as shown
in Equation (2.3).

7.1.2. Newton’s method. Let us firstly look at the results for Newton’s method, which are given in
Tables 7.1 and 7.2.

The timing results have been broken down into the total time, time required to solve the nonlinear
system using Newton’s method, the time spent solving the linearized system with the aid of the V-scheme
and the time needed to build the nested sequence of grids.

Before adding a new grid level, M™, the problem was solved on the coarse grid M™ ! and the result
was interpolated up as an initial guess on M™. The times given in the tables are the accumulated time over
all of the grid levels (i.e. not just the time to solve the problem on the finest grid).

The number of iterations, labeled as ‘No. It.’, is the number of iterations required to solve the problem
on the finest grid level. The iterations were terminated when the residual F[x;] was less than 1075 or the
number of iterations reached a maximum of 10. Typically the method did not converge within 10 iterations
on the coarser grids, but we overlooked this as the coarse grids are only used to give an initial guess to the
fine grid solution. The method did not converge on the finest grid for test problem high J when uniform

grid refinement was used.

f h L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Fi1G. 6.8. Ezample grid at time step 30, contains 5602 nodes.

4599—
287—
1141—]
88361—

11
7
30729°

Fozrt————— 1722 .]

[-0.53782-

L
02 03 04 05 06 07 08 09 10 o1 02 03 04 05 06 07 08 09 1

Fi1g. 7.1. Ezample solutions of the test problems low and low J respectively.

One of the difficulties in solving this particular problem is that Newton’s method tries to ‘push’ the
solution down below zero, but we can not pass negative energy values into the diffusivity functions, D;(F)
or Dy(E). To avoid the negative values we limit how small the energy may become, but this slows down or
halts the convergence rate of Newton’s method on the coarser grids.

Two pre-smoothers and two post-smoothers were used in the V-scheme solver. The convergence rate for
the solver was close to 0.5 for all of the test problems.

Six levels of uniformly refined grids were used to obtain the results presented in Table 7.1. The number
of nodes on the finest grid was 66049.

Five levels of adaptively refined grids form the basis of the results given in Table 7.2. The number of
nodes on the finest grid level ranges from 17043 to 50785; which is an artifact of the refinement routine.
Refinement continues on each grid level until the error indicator has been reduced by a factor of four, which
does not necessarily imply that the number of nodes increases by a factor of four from one grid level to the
next. The time required to build these grids is a lot higher then we would like, mainly due to the cost of
calculating the error indicator, Equation (6.1). As discussed in the following section, calculations involving
the diffusivity term D(E) are expensive.

In Table 7.1 we see that Newton’s method slows down as the strength of the nonlinearity is increased,
as expected. The relatively small coefficient jumps seen in low J have little effect, but the method struggled
as the jump size was increased.

The results displayed in Table 7.2 are a little more erratic. The adaptive refinement aided the solution
method when there was a strong nonlinearity. The timings reported for high are low because the coarse
grids were fine enough to capture the shape of the solution, and consequently the initial guess interpolated

up to the fine grid was well within the ball of convergence.

798
1.532—

46655—|
200 —]

13323
20021

1532
11325

02 03 04 05 06 07 08 O (] 02 03 04 05 06 07 08 09

F1G. 7.2. Ezample solutions of the test problems high and high J respectively.

TABLE 7.1
Solution time, in seconds, when solving the test problems using Newton’s method on an uniformly refined grid.

| low lowJ| high highJ ||
No. Nodes [66049 66049 | 66049 66049

No. It. 3 3 6 *
Total Time 164.7 143.5 | 412.7 646.1
Newton 138.7 1175 | 386.9 620.2
V-scheme 44.2 24.3 | 1359 237.1

Grid Refine 12.2 12.2 121 12.2

7.1.3. FAS. Tables 7.3 and 7.4 give the timing results when the FAS scheme was used. Much of the
discussion given in Section 7.1.2 on how the timing results were obtained also applies here.

The results labeled ‘Nonlin. SOR’ show the amount of time spent in the nonlinear SOR routine. Two pre-
smoothers and two post-smoothers were used for low and low J, four pre-smoother and four post-smoothers
were used for high and high J. A weight of 0.8 was set in the nonlinear SOR method. The maximum
number of FAS iterations allowed on each level was 6.

The FAS Scheme did not converge for high J when either uniform or adaptive refinement was used. We
have not investigated this further yet because the non-stationary problem is our main focus.

The times for the FAS scheme are slower than Newton’s method, except for high with uniform refinement.
This does not mean that the FAS scheme ‘performed poorly’ in fact it had a convergence rate of 0.5, similar
to the linear solve in Newton’s method. We also measured the number of times each node was updated during
the pre-smoothing and post-smoothing stages, for uniformly refined grids, and found that the FAS scheme
had fewer or equal number of updates compared to Newton’s method. The main reason why FAS is slower
is because of the high cost of calculating the effect of the diffusivity term, and its derivative. Every time the
value of a given node is changed, a(D(u);v,w) has to be reevaluated; which involves a search through the
data structure to find the appropriate triangles, the formulation of the basis functions and the evaluation of
the integral. In Newton’s method we only have to evaluate the term once for each node on the finest grid
level to form the Jacobian, but with the FAS scheme it is necessary to evaluate the term several times for
each node on each grid level.

7.2. Non-Stationary. The Crank-Nicolson method was used in all of the test runs.

7.2.1. Uniform v’s Adaptive. To determine if the use of adaptive refinement influences the behavior
of the solution we looked at the solution obtained on a uniformly refined grid and compared it with one

obtained on an adaptively refined grid. The flux limiter was included in the diffusivity term and o = —3

10

TABLE 7.2
Solution time, in seconds, when solving the test problems using Newton’s method on an adaptively refined grid.

| low lowJ| high highJ |
No. Nodes | 41682 24737 | 50785 17043
No. It. 3 3 1 8
Total Time | 156.8 106.3 74.2 1252
Newton 105.4 68.2 174 105.1
V-scheme 36.9 24.5 0.93 24.5
Grid Refine 42.2 32.6 45.7 16.6
TABLE 7.3

Solution time, in seconds, when solving the test problems using the FAS scheme on an uniformly refined grid.

| low lowJ| high highJ |
No. Nodes || 66049 66049 | 66049 66049
No. It. 2 2 1 *
Total Time | 310.6 318.6 | 318.4 *
FAS 2847 292.3 | 202.7 *
Nonlin. SOR || 222.1 228.0 | 252.3 x
Grid Refine 121 121 121 *

and § = 3/4. Figures 7.3 and 7.4 show the results at ¢ = 0.05 with time steps At = 0.1/32. The atomic
mass number Z was fixed at 10, meaning that the solution is homogeneous along the y-axis (see for example

the solution of low and high given in Figures 7.1 and 7.2). The graphs shown in Figures 7.3 and 7.4 are a

slice taken along the y = 0 plane.

As stated in [16], when the flux limiter is included the problem changes from being locally parabolic to

locally hyperbolic and thus becomes more difficult to solve. This property is reflected in the graph shown

in Figure 7.3 where we see a small oscillation near the left boundary. By using adaptive refinement we are

able to decrease the grid size near that boundary and thus remove the oscillation.

081

0.6

041

021

0

= 4 uniform refine
= = 5 uniform refine.
— 6 uniform refine.

L
0.2

L L L
0.35 0.4 0.45

05

Fi1c. 7.3. Ezample solutions of the test problems low and low J respectively.

7.2.2. Jump Size and Non-Stationary Solutions. We now look at how the jump size affects the

movement of the energy wave. We used the inexact Newton-multigrid method to solve the problem.

11

TABLE 7.4
Solution time, in seconds, when solving the test problems using FAS scheme on an adaptively refined grid

| low lowJ| high highJ |

No. Nodes 32729 25690 | 50682 *
No. It. 1 3 1 *
Total Time 150.3 234.5 | 218.2 *
FAS 106.9 196.2 | 161.9 *
Nonlin. SOR 829 1519 | 138.1 *
Grid Refine 36.0 324 45.6 *

= = 2 adaptive refine]
— 3adaptive refine|
— 4 adaptive refine|

0.8

0.6

0.4

0.2

- e — e

0 i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

F1G. 7.4. Ezample solutions of the test problems low and low J respectively.

In the first example @ = —2 and 8 = 3/4. The values of Z are as given in Figure 2.1 and a flux limiter
was used. We took time steps of size 3/64 and the results in Figures 7.5 and 7.6 show the energy at time
steps 32 and 64 respectively. The nonlinear iterations were terminated when the residual was less than 1076.
The examples took 13202 seconds to run.

Recall that the atomic mass number in the lower left corner of the domain is higher than that in the

upper left corner. We can clearly see how this influences the movement of the wave front.

Q =
92:
=0

Q7557

0 0.1 0.2 0.‘3 0‘4 U‘.S 0‘6 0‘.7 0.‘8 019 1
Fic. 7.5. Exzample solution at time step 32 with a = —2.

In the next set of examples we set @« = —3 and 8 = 3/4. All of the other parameters are the same as
those given above. The results in Figures 7.7 and 7.8 show the energy at time steps 32 and 64 respectively.

It took a total of 3520 seconds to solve the problem, with approximately 89% of that time spent in the

12

o
©
0.39368——|
L

L L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Fic. 7.6. Exzample solution at time step 64 with a = —2.

nonlinear solver and 7% spent in the adaptive refinement routine. The number of nodes on the finest grid
level varied from about 2500 to 5500.
These graphs show how an increase in the mass number slows down the movement of the wave front.

o Ml L L L L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Fi1c. 7.7. Ezample solution at time step 32 with a = —3.

L L L L L L L
03 0.4 05 0.6 0.7 0.8 0.9 1

Fi1c. 7.8. Exzample solution at time step 64 with a = —3.

8. Conclusion. The inexact Newton-multigrid method is faster than the FAS scheme when solving
radiation transport equations. Note however, we only presented serial results in this report and our initial
study into the parallel performance suggests that the FAS scheme scales better.

Adaptive refinement helps to capture the information along the wave front.

13

9. Future Work. Both of the solvers have difficulty converging during the first few time steps, thus

we like to investigate some adaptive time-stepping techniques.

We would also like to study the parallel scalability of the solvers.

REFERENCES

[1] A. BRANDT, Multi-level adaptive solutions to boundary-value problems. Math Comput., 31 (1977), pp.
333-390.

[2] W. L. Bricas, V. E. HENsON, AND S. F. McCoRMICK, A Multigrid Tutorial. STAM, 2000.

[3] P N. BrRowN, B. CHANG, F. GRAZIANI AND C. S. WOODWARD, Implicit solution of large-scale
radiation-material energy transfer problems, Technical Report UCRL-JC-132831, Lawrence Liver-
more National Laboratory, Jan. 1999. To appear in Proceedings of the Fourth IMACS International
Symposium on Iterative Methods in Scientific Computations.

[4] P N. BROWN AND C. S. WOODWARD, Preconditioning Strategies for Fully Implicit Radiation Diffusion
with Material-Energy Transfer, Technical Report UCRL-JC-139087, Lawrence Livermore National
Laboratory, May. 2000. To appear in STAM J. Sci. Comput.

[5] D. A. KnoLL, W. J. RIDER AND G. L. OLSON, An efficient nonlinear solution method for non-
equilibrium radiation diffusion, Technical Report LA-UR-98-2154, Los Alamos National Laboratory,
1998. Submitted to J. Quant. Spec. and Rad. Trans.

[6] M. KRiZEK AND L. Liu, Finite element approximation of a nonlinear heat conduction problem in
anisotropic media, Technical Report 4/1997, Laboratory of Scientific Computing, University of
Jyviskyla, Finland, 1997.

[7] D. J. MAVRIPLIS, Multigrid approaches to non-linear diffusion problems on unstructured meshes, ICASE
Report No. 2001-3, (NASA /CR-2001-210660), February 12, 2001, 16 pages. Submitted to the Journal
of Numerical Linear Algebra with Applications.

[8] S. F. McCoRMICK, Multigrid Methods. STAM Frontiers In Applied Mathematics, 1987.

[9) W. F. MITCHELL, Unified Multilevel Adaptive Finite Element Methods For Elliptic Problems. PhD
thesis, Department Of Computer Science, University Of Illinois at Urbana-Champaign, Urbana, IL,
1988. Technical Report UTUCDCS-R-88-1436.

[10] W. F. MITCHELL, A comparison of adaptive refinement techniques for elliptic problems. ACM Trans.
Math. Software, 15 (1989), pp. 326-347.

[11] W. F. MITCHELL, Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput,
13 (1992), pp. 146-167.

[12] V. A. Mousseau, D. A. KNoLL AND W. J. RIDER, Physics-based preconditioning and the Newton-
Krylov method for non-equilibrium radiation diffusion. Journal of Computational Physics, 160
(2000), pp. 743-765.

[13] J. M. OrRTEGA AND W. C. RHEINBOLDT, lterative solution of nonlinear equations in several variables,
Academic Press, New York and London, 1970.

[14] G. C. POMRANING, The equations of radiation hydrodynamics, Pergamon, New York, 1973.

[15] U. RUDE, Mathematical and computational techniques for multilevel adaptive methods, SIAM, Philadel-
phia, 1993.

[16] W. J. RIDER, D. A. KNOLL AND G. L. OLSON, A multigrid Newton-Krylov method for multimaterial
equilibrium radiation diffusion, Technical Report LA-UR-98-2153, Los Alamos National Laboratory,

14

[17] L.

18] L.

[19] L.

[20] L.

[21] J.

1998, 34 pages.

StaLs, Adaptive multigrid in parallel, in Proceedings of Seventh STAM Conference on Parallel Pro-
cessing for Scientific Computing, D. Bailey, P. Bjgrstad, J. Gilbert, M. Mascagni, R. Schreiber, H.
Simon, V. Torczon and L. Watson, eds, STAM, Philadelphia, 1995, pp. 367-372.

STALS, Parallel multigrid on unstructured grids using adaptive finite element methods, PhD thesis,
Department of Mathematics, Australian National University, Canberra, Australia, 1995.

STALS, Implementation of multigrid on parallel machines using adaptive finite element methods, in
Proceedings of 9th International Conference on Domain Decomposition, P. Bjgrstad, M. Espedal
and D. Keyes, eds, 1998, pp. 488-496.

StaLs, A flexible data structure for the adaptive refinement of unstructured grids in parallel, in The
Proceedings of The 14th Kiel GAMM Seminar on Concepts of Numerical Software, January, 1997.
To appear.

C. A. VILLEGAS, Anisotropic Adaptive Refinement Algorithms for Finite Element Methods. PhD
thesis, Graduate School of Arts and Science, Department of Mathematics, New York University,
September 2000.

15

