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Abstract

A new star pattern recognition method is developed using singular value

decomposition of a measured unit column vector matrix in a measurement frame and the

corresponding cataloged vector matrix in a reference frame. It is shown that singular

values and right singular vectors are invariant with respect to coordinate transformation

and robust under uncertainty. One advantage of singular value comparison is that a

pairing process for individual measured and cataloged stars is not necessary, and the

attitude estimation and pattern recognition process are not separated. An associated

method for mission catalog design is introduced and simulation results are presented.

Introduction

Star cameras are among the most attractive attitude sensors because they provide

three-axis attitude information with high accuracy. Star pattern recognition is an

integrated part of star cameras. It is based on the invariant properties from coordinate

transformation. For the past two decades, many of the invariant properties, such as

angular separation, brightness of star, shape of triangles with vertices of star, and

constellations, have been utilized for star identification.1-9 In practice, one of the

challenges of using these star trackers arises when initializing sensors and/or recovering

them from sudden failure is to efficiently solve the “lost-in-space” problem. Even though

a-priori attitude estimation is not necessary for a star tracker, these initializing problems

without a-priori attitude information tend to require intensive computer storage and
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computation time; For example, one popular pattern recognition method uses triplet

angular separation matching, which is discussed by Gottlieb.10 Mortari8 introduces a

Search-Less algorithm, where angular separation is indexed as integer, and a procedure is

introduced to directly access all possible star pairs that correspond to a given measured

star pair. Besides angular separation comparisons, many star pattern recognition methods

are introduced, such as star constellation matching, triangle matching, stochastic

approach, and other more difficult to characterize methods based on fuzzy logic, neural

networks, and so on. Usually, the brightness of a star is used as a secondary filter,

because position measurement is usually the most accurate data available. While

measurement of absolute star magnitude is usually inaccurately correlated with cataloged

visual magnitude or catalog-based predictions of instrument magnitude, the relative

magnitudes of stars imaged by the star camera are usually more nearly correlated to

predictions. We can use magnitude information implicitly by ranking their relative

measured magnitude and use this as secondary information.

In the study of the attitude determination problem, the most robust estimators

minimizing Wahba’s loss function are Davenport’s q method11-15 and the Singular Value

Decomposition (SVD) method by Markley.16 The q method, which computes the optimal

quaternion as the eigenvector of a symmetric 4 4× matrix with the largest eigenvalue, is

faster and produces more convenient output. The SVD solution is completely equivalent

to the original solution by Farrell and Stuelpnagel.17 The difference is that computing the

SVD is one of the most robust numerical algorithms.

In this study, a simple and inexpensive attitude initialization method for solving

the lost-in-space problem is developed by introducing other unique, transformation

invariant properties. These invariant properties are derived from the singular value

decomposition of the reference star vectors and their corresponding vectors measured in

the camera axes used for both star pattern recognition and attitude determination. A new

mission catalog is generated, and attitude is estimated without the necessity of individual

star pairing.
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Singular Value Decomposition Method

Let vi and wi (i = 1,…, N) be the reference (cataloged) unit vectors and their

corresponding vectors measured in the camera axes. These vectors satisfy

W CV= (1)

where column vector matrices W and V are defined as

[ ]1 2 NW w w w= L (2a)

[ ]1 2 NV v v v= L (2b)

and C is the direction cosine matrix (the unknown rotation matrix associated with the

spacecraft angular position) such that

TC C I= (3a)

or

1TC C−= (3b)

By Singular Value Decomposition (SVD), W and V are factorized as

3

1

T T
v v v v v vi i i

i

V P Q p qσ
=

= Σ =∑ (4a)

3

1

T T
w w w w w wi i i

i

W P Q p qσ
=

= Σ =∑ (4b)

where Pv and Pw are 3 × 3 orthogonal matrices of left singular vectors pvi and pwi, (i = 1,

2, 3), Qv and Qw are N × N orthogonal matrices of right singular vectors qvi and qwi, (i = 1,

2,…, N), and Σv and Σw are 3 × N diagonal matrices with singular values σvi and σwi, (i =

1, 2, 3), of V and W. For any number of 3N ≥ distinct vectors, there are exactly 3 non-

zero singular values and 3 left and right distinct singular vectors that may be used to

uniquely parameterize the matrices W and V.

Invariant Singular Values

Post-multiplying Eq. (1) by TW , we obtain
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T T TWW CVV C= (5)

A similarity transformation is evident in Eq. (5) between the positive definite symmetric

matrix TWW and the positive definite symmetric matrix TVV because C is a unitary

matrix and thus 1 TC C− = . Substituting Eqs. (4a) and (4b) into Eq. (5) yields

T T T TT
w w w w w w w w w

T T T TT T T T
v v v v v v v v v

WW P Q Q P P S P

CVV C CP Q Q P C CP S P C

= Σ Σ =

= = Σ Σ =

%

%

(6)

or

T T T
w w w v v vP S P CP S P C=% % (7)

where wS% and vS% are 3 × 3 diagonal matrices with eigenvalues (σw1
2, σw2

2, σw3
2) and

(σv1
2, σv2

2, σv3
2), respectively, given by

T
w w wS = Σ Σ% and T

v v vS = Σ Σ% (8)

Since eigenvalues are preserved with a similarity transformation, WWT and VVT in Eq. (5)

have the same eigenvalues, so

w vS S=% % (9)

or

2 2 2 2 2 2
1 1 2 2 3 3, ,w v w v w vσ σ σ σ σ σ= = = (10)

It implies that the singular values of W and V must satisfy

1 1 1 2 2 2 3 3 3, ,w v w v w vσ σ σ σ σ σ σ σ σ= = = = = = (11)

where σ1, σ2, and σ3 are introduced to signify their equality. In other words, W and V

clearly have identical singular values. This result is consistent with well-known truths

about the SVD; the singular values of a general matrix M are the eigenvalues of the

squared symmetric matrices MMT or MTM, and the eigenvectors of MMT and MTM are the

corresponding singular vectors.
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Invariant Right Singular Vectors

Pre-multiplying Eq. (1) by WT and using the identity of Eq. (3a), one obtains

T T T TW W V C CV V V= = (12)

Using Eq. (4) for the SVD of W and V, and Eq. (10) for equal singular values of W and V,

the matrices WTW and VTV can be written as

T T T T T T T
w w w w w w w wW W Q P P Q Q Q Q SQ= Σ Σ = Σ Σ = (13a)

T T T T T T T
v v v v v v v v vV V Q P P Q Q Q Q SQ= Σ Σ = Σ Σ = (13b)

where S is an N × N diagonal matrix with three non-zero eigenvalues (σ1
2, σ2

2, σ3
2).

Equation (13a) and (13b) become

2 2 2
1 1 1 2 2 2 3 3 3

T T T T
w w w w w wW W q q q q q qσ σ σ= + + (14a)

2 2 2
1 1 1 2 2 2 3 3 3

T T T T
v v v v v vV V q q q q q qσ σ σ= + + (14b)

Assume that the singular values of W and V are distinct. Two positive, semi-definite

matrices with distinct eigenvalues are identical if and only if their nonzero eigenvalues

and orthonormal eigenvectors are identical. Note that each orthonormal vector is unique,

except for its sign. Since qwi and qvi are orthonormal eigenvectors of TW W and TV V ,

respectively, they must satisfy

, 1, 2,3wi viq q i= ± = (15)

Equation (15) can be rewritten as

(:,1: 3) (:,1: 3)w vQ Q L= (16)

where L is 3 × 3 diagonal matrix, given by

1 1 2 2 3 3diag sign( ) sign( ) sign( )T T T
w v w v w vL q q q q q q =   (17)

Equations (11) and (16) represent invariant properties of W and V with any unitary

coordinate transformation. Here we assume that both star sequences from the reference

map and the measurements are in the same order. The assumption is possible by ordering
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the stars with their degree of brightness. Nevertheless, confusion may arise when two

stars have the same brightness and thus some rows in wiq and viq may not be consistent,

unless we take careful steps to minimize the probability of this event. Since more than 4

measured stars are usually in the field of view, we can always choose the stars in

ascending order with the brightest star being the first, and the faintest being the fourth.

We can delete measured stars that are not separated by at least a relative magnitude

increment of 0.2 (this has been found to be sufficient in virtually all cases). Obviously,

analogous steps must be taken in creating the catalog that will be used to extract the

corresponding reference vectors. Since we are only interested in the sign of the two

vectors wiq and viq , we may compare the maximum value of wiq and the maximum value

of viq and take the sign of the resultant product to replace the sign( )T
wi viq q in Eq. (17). The

sign is needed for final computation of the direct cosine matrix C.

Computation of Direct Cosine Matrix

Consider column exchanges of W by an N × N permutation matrix K

Ŵ WK= (18)

where

TKK I= (19)

Post-multiplying matrix Eq. (18) by ˆ TW gives

1

ˆ ˆ
N

TT T T T
i i

i

WW WKK W WW w w
=

= = =∑ (20)

The sum of the outer product of column vectors of W is preserved with column

exchanges of W, implying that the singular values and the left singular vectors of Ŵ

remain unchanged. The same statement is also true for the reference vectors in V. This

means that individual vector paring process is not necessary for the pattern recognition, if

the measurement set and reference set has one-to-one relationship, given by

Ŵ WK CV= = (21)

Note that the singular values of Ŵ and V are identical.
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Unlike other pattern recognition methods, SVD pattern recognition method yields

attitude estimate directly. In Eq. (7), pwi and pvi should satisfy

, 1, 2,3w vi ip Cp i= ± = (22)

Equation (4a) indicates that the sign of qvi in Eq. (15) should be consistent with the sign

of pvi in Eq. (22). Let wP be the matrix of pwi. Equation (7) thus gives that

w vP CP L= (23)

where L is the 3 × 3 matrix shown in Eq. (17). The orthogonal attitude matrix is

estimated as

( )T
w vC P P L= (24)

In the ideal case, the two matrices W and V have identical singular values. In reality, the

measurement vectors are corrupted by several error sources, including CCD precision,

bias, and sensor misalignment. Under these uncertainties, we need to check if these

singular values are still unique or not.

Physical Interpretation

To gain insight about singular values, let us consider the physical meaning of

SVD of the matrix W. Define a matrix A as

1 1 2 2 3 3
T T T TT

N NA WW w w w w w w w w= = + + + +L (25)

Then, the square of the maximum singular value of W is obtained from

2
max

0
max

x

Ax

x
σ

≠
= (26)

Assume that x is on the unit circle, then

2
max

0
1

max
x
x

Axσ
≠

=

=
(27)

where
1 1 2 2

T T TT
N NAx WW x w w x w w x w w x= = + + +L (28)
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For simplicity, consider the case of N = 1. The outer product of w1 becomes the

projection of x onto w1, as shown in Figure. 1. The projection of x onto w1 is given by

1 1
Tp w w x= (29)

The maximum of p happens when x is parallel to w1. Similarly, for N >1, the problem is

to find the unit vector x so that the sum of projections of x onto each column vectors wi is

maximized. Then, x becomes the left singular vector associated with the maximum

singular value, and ||Ax|| is the square of the maximum singular value of W. The square of

the minimum singular value of W represents the minimum value of ||Ay|| when the sum of

projections of the unit vector y (perpendicular to x) onto each column vector w is

minimized. Finally, the square of the intermediate singular value of W represents the

projection of the unit vector z, perpendicular to the plane generated by x and y, onto each

column vector. These three singular values and three left singular vectors represent 3-D

ellipsoid with three principle axes of singular vectors and three semi-axis lengths of

singular values. If the unit vector is not perfectly measured while the uncertainty is less

than prescribed tolerance, these projections may not change drastically like criterion of

any other pattern recognition method. So, under some degree of measurement

uncertainty, these singular values represent a unique property of the unit column vector

matrix that is very useful for star pattern recognition.

Pattern Recogntion and MIssion Catalog Generation

The SVD method can be easily applied to initializing the attitude of a star tracker

and the lost-in-space case. Conventional star trackers commonly use angular separation

or length ratio of a triangle for pattern recognition. Assume that the mission catalog

contains M guide stars. In the lost-in-space case, the angular separation method requires

M(M−1)/2 comparisons for each angular separation in the measurement set while the

triangle method requires M(M−1)(M−2)/6 comparisons for each triangle. Although, by

pre-processing, which eliminates pairs with larger angular separation than the FOV

diameter, the comparison number is still huge and time-consuming and also yields

tremendous ambiguities. The SVD method, with judicious building of a mission catalog,

will become the most reliable and fast attitude initializing method.
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A reference star catalog usually includes right ascension (RA), declination (DEC),

and visual magnitude (Mv) of stars. Some pattern recognition methods use only position

information, whereas others use magnitude information and position information. In the

star camera, star light magnitude information is not as accurate as position information. It

depends on the specific camera and time. Moreover, the conversion of instrumental

magnitude to visual magnitude is much more difficult. So, direct use of magnitude

information is not desirable and has been used as a secondary filter. However, the relative

magnitude between stars in the star camera is more accurate than magnitude itself, since

visual magnitude of a star is proportional to the pixel intensity and area occupied by

starlight, which allows us to rank the stars by their relative magnitude. The number of

stars increases exponentially as magnitude increases; or as magnitude increases,

magnitude ambiguity also increases. To eliminate the ambiguity of rank, we can use the 4

brightest stars from each star image. In this study, we consider an 8° × 8° FOV star

camera, which can capture enough number of stars to meet most attitude estimation

precision. Our mission catalog will be constructed considering these aspects. Stars of

most mission catalogs are filtered by a pre-specified visual magnitude limit considering

the size of the FOV.

If the magnitude limit is small, there is a non-zero possibility that the catalog has

holes. When the star camera looks at these holes, no guide star is found. On the other

hand, if the magnitude limit is large, there exists a lot of ambiguity for pattern

recognition, and computer storage is wasted. In this study, we did not set any specific

magnitude limit, but generated a mission catalog which does not have any hole for an 8°

× 8° circular FOV and at least 4 stars in that FOV. In fact, stars in the celestial sphere are

not evenly distributed. Moreover, to find evenly distributed points in the sphere for a

small FOV is impossible. Instead of finding the evenly distributed points, we can use

modern computational power. Since the generation of mission catalog is pre-process, this

does not harm the speed and storage for a real mission; and the final mission catalog is

very slim and neat, which will be shown later.

Let us consider brighter stars than 7.3 Mv, where no hole for an 8° × 8° circular

FOV exists. Distribution of reference catalog stars is shown in Figure. 2. First, RA and

DEC for each star are converted to a direction cosine vector. Then, too close stars and
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double stars are eliminated using the inner product of direction cosine vectors. Consider

each direction cosine vector as the boresight direction, and filter adjacent stars so that

angular separation from the boresight direction is less than 4°. Adjacent stars, including

the boresight direction star, are sorted by their visual magnitude in ascending order; then,

the 4 brighter stars are chosen, considering the same visual magnitude of 4th-brightest

stars and 5th-brightest stars (possibly more than 2). All M boresight directions have 4

adjacent stars at 7.3 Mv; or there is no star which does not have 4 adjacent stars.

Although M is a huge number, it is about twice bigger than real distinctive sets by

duplication. Duplication is arisen in the case of Figure. 3. The letter (a, b,…) represents

the name of a star, and the number is the rank of brightness of each star. Consider d as the

boresight direction. Temporary adjacent stars are encircled by circular FOV D and sorted

by their visual magnitude and ranked. Then, the 4 brightest stars are the set of [b, d, e, f].

Next, consider the star a as the boresight direction, and temporary adjacent stars are

encircled by circular FOV A. By the same procedure, adjacent stars for the star a become

[b, d, e, f]. Thus, the set [b, d, e, f] is duplicated for the different boresight directions a

and d. As a result, the fainter star a is discarded from the boresight directions. Note that a

may be included as an adjacent star for other boresight directions. By this procedure, a

large number of fainter stars is eliminated from the reference catalog, and stars are

distributed evenly through the whole celestial sphere, as shown in Figure. 4. After

eliminating these multiplications, L boresight directions remain. An L × 4 index matrix is

generated, of which the first column is the index of the brightest adjacent star for each

boresight direction and remaining columns are the indexes of the adjacent stars in

increasing order in magnitude. Each row of indexes contains indexes of 4 brightest stars.

From the index matrix, M guide stars are extracted. Next, pre-calculate the singular

values of the 4-column-vector matrix for each boresight direction. Then, an L × 3

floating-point array is required. Total storage requirement is shown in Table. 1. Although

the mission catalog has almost evenly distributed guide stars, it can still experience lack

of boresight direction, as shown in Figure. 5. When a star camera looks at the celestial

part encircled by A, the FOV has the minimum requirement of stars; but the mission

catalog may not have the corresponding set, because there are no boresight directions

having such adjacent stars. This problem can be resolved using the initial reference
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catalog with a larger magnitude limit, but there is still no way to obtain continuous

boresight directions.

The pattern recognition process is simple and straightforward. When an image is

acquired, the measurement stars are sorted by their instrument magnitude. Consider a

measurement star (starting with the brightest star) as boresight direction, and choose 4

brighter stars within the circular FOV. After SVD, singular values are compared with

those in the mission catalog. It is possible that multiple identification happens, since

measurement noise may cause ambiguity. For these identified subsets, an additional filter

is applied from Eq. (15). The direction of each right singular vector from the

measurement matrix is compared with that from the identified subsets. The possibility of

mismatching approaches to zero. If pattern recognition fails for the first boresight

direction, repeat this process with the next boresight direction. Once pattern recognition

is accomplished, attitude is estimated by Eq. (24). To confirm success of pattern

recognition and attitude estimation, pattern recognition is repeated for subsequent images,

and the closeness between the current attitude estimate and previous attitude estimates is

tested.

Table. 1 Storage Requirement of Mission Catalog

Content Size

Guide Star M×3 floating point array (5761 × 3)

Index Matrix L×4 integer array (11157 × 4)

Singular Values L×3 floating point array (11157 × 3)

Total 484 Kbytes

Simulation

SVD pattern recognition method is applied to Night-Sky images without a-priori

attitude information. Night-Sky images are generated by slewing the star camera, as

shown in Figure. 6. Using the initializing method developed in this paper, pattern

recognition and attitude estimation is performed for 10 subsequent images, and results are
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summarized in Table. 2. For the first 7 images, pattern recognitions are successfully

performed. Although some of the images have multiple identifications (image 4 and 6),

estimated attitudes in 3-1-3 Euler angles are consistent. Since these images are obtained

from modest slewing motion of the star camera, identified attitudes are supposed to be

close to each other. The result illustrates this fact. The pattern recognition failed at image

8, 9, and 10. These failures were caused by magnitude ranking error, lack of

measurements, and, most likely, lack of boresight direction. However, the advantage of

this method is in the low possibility of mismatching by double-checking of the singular

values and singular vectors. Note that the failure of pattern recognition is more desirable

than mismatching.

Table. 2 Pattern Recognition and Attitude Estimation for Night-Sky Images

Pattern Recognition 3-1-3 Euler Angles (radian)

Image 1 1 2.5780 1.1583 3.1338

Image 2 1 2.6128 1.1583 3.1356

Image 3 1 2.6383 1.1587 3.1364

2.6872 1.1590 3.1374
Image 4 2

2.6873 1.1589 3.1387

Image 5 1 2.7133 1.1589 3.1410

2.7439 1.1536 3.1387
Image 6 2

2.7408 1.1593 3.1390

Image 7 1 2.7937 1.1596 3.1399

Image 8 0 N/A

Image 9 0 N/A

Image 10 0 N/A

Conclusion

A new strategy for star pattern recognition and attitude estimation has been developed by

utilizing SVD of a measurement vector matrix and reference vector matrix. The

advantage of the proposed method is that the pattern recognition is extremely fast, since
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only three singular values are compared, no matter how many vectors are considered.

This is desired for the lost-in-space case without any a-priori attitude estimation. The

other advantage of this method is that the pattern recognition and the attitude estimation

can be performed simultaneously, or individual star pairing is not necessary. Moreover,

the algorithm yields optimal attitude estimate. The mission catalog contains the direction

cosines of each guide star, the star index, and the singular values for each boresight

direction. The size of the mission catalog is relatively small (under 500Kbytes). Further

study, including the quantitative comparison of the proposed method with other

initialization algorithms, will be followed by this paper.

w1

x

p

Figure. 1 Projection x onto w1

Figure. 2 Initial Reference Catalog Star Distribution
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Figure. 3 Mission Catalog Generation

Figure. 4 Mission Catalog Guide Star Distribution
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Figure. 5 Lack of Boresight Directions



15

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Image 7 Image 8 Image 9

Image 10

Figure. 6 Night-Sky Images
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