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ABSTRACT

The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes

has proven to be a useful method for reducing the size of the aerodynamic model over those

representations that use local variables at discrete grid points in the flow field. Eigenmodes

and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with

good effect. This suggests that system identification models may also be used to represent

the aerodynamic flow field. Implicit in the use of a systems identification technique is the

notion that a relative small state space model can be useful in describing a dynamical system.

The POD model is first used to show that indeed a reduced order model can be obtained

from a much larger numerical aerodynamical model [the vortex lattice method is used for

illustrative purposes] and the results from the POD and the system identification methods are
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then compared. For the example considered, the two methods are shown to give comparable

results in terms of accuracy and reduced model size. The advantages and limitations of

each approach are briefly discussed. Both appear promising and complementary in their

characteristics.

INTRODUCTION

In recent work it has been shown that the use of a modal representation of unsteady aero-

dynamic flow fields has many advantages [1-4]. Among these is the ability to reduce the

order of a computational fluid dynamics (CFD) code from many thousands of degrees of

freedom to several tens of degrees of freedom while retaining essentially the same accuracy

of representation of fluid forces acting on a wing. Recognizing that the aerodynamic forces

may be expressed in terms of aerodynamic modes, this suggests that in some cases it may be

advantageous to use a system identification method to determine a modal representation of

the aerodynamic forces. For example, this could be done using either numerical data from a

CFD code or experimental data from a wind tunnel test. Here we explore this possibility and

compare the results obtained from a system identification procedure and those obtained by a

direct determination of the aerodynamic modes from a theoretical fluid dynamics model. In

the present study, a three-dimensional time domain vortex lattice aerodynamic model and

the Proper Orthogonal Decomposition(POD) method are used to investigate the unsteady

flow about an oscillating delta wing. The POD modes and the eigenmodes of the vortex

lattice model are determined starting from a time history of the flow field computed for

a step change in angle of attack (or plunge velocity). This same set of time histories is

then provided as the input data for a system identification technique as discussed in [5] to

determine a dynamic model of the aerodynamic system. The eigenvalues of this identified

system are then compared to those determined using the POD method and the vortex lattice

model. Excellent agreement is found between the two results, thus confirming the ability

of system identification methods to extract useful information from numerically determined

time histories based upon a theoretical computational model. This also suggests that a sim-

ilar procedure might be successful that employs numerical data from more complex CFD

models or from measured experimental data. In the following sections, discussed in order
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are the Aerodynamic Model, the Proper Orthogonal Decomposition Method, the System

Identification Method and an Example using numerical data from a simulated time history.

AERODYNAMIC MODEL

The flow about a cantilevered half-span delta wing is assumed to be incompressible, inviscid

and irrotational. Here an unsteady vortex lattice method is used to model this flow. Kim [4]

has also used a similar flow model in his study of the POD or Karhunen-Loeve method for a

wing of rectangular planform. A typical planar vortex lattice mesh for the three-dimensional

flow over a delta wing is shown in Figure 1. The plate and wake are divided into a number

of elements. In the wake and on the wing all the elements are of equal size, ∆x, in the

streamwise direction. For the present calculations, the spanwise element size, ∆y, is chosen

to be equal to ∆x. Point vortices are placed on the plate and in the wake at the quarter

chord of the elements. At the three-quarter chord of each plate element a collocation point

is placed for the downwash, the velocity induced by the discrete vortices is set equal to

the downwash arising from the step angle of attack of the delta wing. Thus one has the

relationship,

wt+1
i =

∑kmm
j KijΓt+1

j , i = 1, ......km (A1)

where wt+1
i is the downwash at the ith collocation point at time step t+1, Γj is the strength

of the jth vortex. Γ is normalized by cU and w by U where U is the freestream velocity. Kij

is an aerodynamic kernel function. An aerodynamic matrix equation to determine Γ can be

expressed as,

[A]{Γ}t+1 + [B]{Γ}t = [T ]{w}t+1 (A2)

where [A] and [B] are aerodynamic coefficient matrices and [T ] is a transfer matrix for

determining the relationship between the global vortex lattice mesh and the local vortex

lattice mesh on the delta wing itself. Expressions for A,B and T are given in Ref.[1].

From the fundamental aerodynamic theory, the pressure distribution on the wing can be

obtained at the jth point in terms of the vortex strengths. The pressure difference between
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the wing plate upper and lower surfaces at x = xj, y = yj is given by

∆pt+1(xj , yj) = ρU2 c
∆x

[(Γt+1(xj , yj) +
∑j

i=1(Γt+1(xi, yj) − Γt(xi, yj))] (A3)

The local total lift at y = yj is obtained by integrating the pressure difference along the

local chord-line.

Lt+1
local(yj) =

∫ clocal

0
∆pt+1(x, yj)dx

where clocal = cyj/l and l is span length and c is the root chord. The total lift is obtained

by integrating the local total lift along the span.

Lt+1 =
∫ l

0
Lt+1

local(y)dy = c
kn∑
j=1

Lt+1
local(yj)∆y

where ∆y = 1/kn and kn is the number of spanwise discrete elements. The total aerodynamic

lift coefficient, CL is defined by

Ct+1
L = Lt+1/1

2ρU
2Aw (A4)

where Aw is the total wing area. In the present example, Aw = 1
2c

2 and ∆y = 1
15

The numerical model is a simple delta wing configuration with a leading edge sweep of

45 degrees. We use an aerodynamic vortex lattice model with 120 vortex elements on the

delta wing (km=kn=15) and 525 vortex elements in the wake (kmm=50). The total number

of vortex elements is N=645.

SINGULAR VALUE DECOMPOSITION, PROPER OR-

THOGONAL DECOMPOSITION AND BALANCED

MODES: A GENERIC DISCUSSION

Let q(j) be the nth flow variable at some spatial point at some time j where n = 1, ..., N

and j = 1, ...., J . Now form the matrix, Q̂, as

[
Q̂

]
N×J

=




q1(1) ....... q1(J)

: : :

qN(1) ....... qN(J)


 (1)
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Again note the total number of time steps is J and the total number of flow variables is N .

For a typical CFD calculation, J might be 1000 and N might be 10000 or more. Hence N

is much greater than J .

Now assume a singular value decomposition of Q̂ i.e.

[Q̂] = [U ][Σ][V ]T (2)

where U is a unitary matrix of dimension N ×n and V is also a unitary matrix of dimension

J × n. One may select n and typically n will be less than J . Note that

[U ]T [U ] = [I]n×n , [V ]T [V ] = [I]n×n (3)

and Σ is a diagonal matrix of singular values, i.e.

[Σ]n×n =




σ1

σ2

.

.

σn




(4)

Now order these singular values such that

σ1 ≥ σ2 ≥ ........σn (5)

Form Φ, the correlation matrix for the POD method.

[Φ] ≡ [Q̂]T [Q̂] = [V ][Σ]T [U ]T [U ][Σ][V ]T = [V ][Σ]T [Σ][V ]T (6)

Equation (6) implies that V is the eigenvector of the correlation matrix and the corresponding

eigenvalues are the squares of the singular values. From Equation (2), one may compute

(assuming that V is normalized so that the magnitude of each eigenvector is unity)

[Q̂][V ] = [U ][Σ][V ]T [V ] = [U ][Σ] (7)

One may also compute U from Equation (7) and further one may compute Q̂ from a

knowledge of U, V and the singular values using Equation (2). Usually it is easier to compute
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Q̂ directly from Equation (1). However the representation of Equation (2) may be useful if

one chooses to decompose Q̂ such that

[Q̂] = ([U ][Σ]1/2)([Σ]1/2[V ]T ) (8)

With this decomposition the POD modes are said to be ”balanced” and these are often put

forth as an optimum choice for mode selection.

If there is a truncation in the singular values, i.e. one chooses n to be less than J

which is much less than N , then Equation (2) may be written in a reduced form. The

corresponding reduced form for Q̂ approaches the original Q̂ if the neglected singular values

or POD eigenvalues are sufficiently small compared to those retained.

Denoting V as the eigenvector matrix for the correlation matrix of dimension J × n,

noting that Q̂ is a matrix of N × J , and defining, a, as the new unknowns to be determined

which are the n modal amplitudes of the POD modes, then one may write the original flow

variables, q, as

{q(t)}N×1 = [Q̂]N×J [V ]J×n{a}n×1 (9)

Substituting this expression into a generic form of the flow equations of motion, i.e.

{dq
dt

} = {Q(q)} + {B}u (10)

and pre-multiplying by the transpose of Q̂ gives a reduced order model in terms of the new

unknowns, a ,where the dimension of the vector a is n × 1 with n chosen to be less than J .

For simplicity, in Equation (10) only a single scalar input, u, is shown. The generalization

to multiple inputs is clear. If Q(q) in Equation (10) is expanded in a Taylor Series about a

steady flow solution (the time linearized model corresponds to retaining only linear terms in

q in the Taylor Series), then a particularly simple and attractive form of the reduced order

model is obtained.

There is another interesting case to consider which may arise when experimental data

rather than numerical data from a CFD code are used to construct a reduced order model.

In this case the number of flow variables that are observed or measured, N , will be relatively

small and typically N will be less than J , the total number of time steps for which data are
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obtained. Formally the calculation still goes through, but now the number of flow variables

modeled is much smaller than for a CFD code. Ideally these flow variables would be related

to the amplitudes of the dominant modes of the flow.

SYSTEM IDENTIFICATION

To conform to the usual formalism of system identification theory, we consider a discrete

time state space model [4]. Note the vortex lattice flow model naturally appears in this

form. For continuous time models, the relationship between discrete and continuous time

representations must be carefully considered. Formally the procedure is similar, however.

Assume that the flow field can be described by the discrete-time state-space model,

x(k + 1) = Ax(k) +Bu(k) (11)

y(k) = Cx(k) +Du(k)

where x(k) is a state vector of n × 1 (n=order of the system), u(k) is an input force vector

of γ × 1 (γ=number of input), y(k) is an output measurement vector of f m× 1 (m=number

of output). The matrices A,B,C, and D, are the state matrix, input matrix, output matrix,

and direct transmission matrix, respectively.

Let ui(0) = 1(i = 1, 2, .....γ) and ui(k) = 0(k = 1, 2, ....) be substituted into Eq.(11).

When the substitution is performed for each input element ui(0) = 1(i = 1, 2, .....γ), the

results can be assembled into a pulse response matrix Y with dimension m by r as follows:

Y0 = D,Y1 = CB, Y2 = CAB, ......, Yk = CAk−1B (12)

The constant matrices in the sequence are known as Markov parameters (See [4]).

Assume that the scalar quantity qi(k) in the matrix Q in Eq.(1) is the pulse response of

the ith flow variable at the time step k corresponding to a pulse input. A column vector Y
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can be formed by

Y1 = CB =




q1(1)

q2(1)

:

:

qm(1)



, Y2 = CAB =




q1(2)

q2(2)

:

:

qm(2)



, ....Yk = CAk−1B =




q1(k)

q2(k)

:

:

qm(k)




(13)

System identification begins by forming the generalized Hankel matrix H(0), composed

of the Markov parameters

H(0) =
[
Y1 Y2 .... Yl−1

]
(14)

This matrix is identical to the matrix Q in Eq.(1) with the absence of the last column. Here

as assumption has been made, i.e., m > l > n. For the other cases where the number of

measurement sensors is sufficiently less than the order of the system, i.e., l > n > m, a

different Hankel matrix can be formed for system identification (see Chapter 5 in [4]). The

fundamental rule is that the Hankel matrix must be formed such that its rank is larger than

the order of the system to be identified.

In theory, the Hankel matrix H(0) and the state-space model are related by

H(0) =
[
Y1 Y2 .... Yl−1

]

=
[
CB CAB .... CAl−2B

]

= C
[
B AB .... Al−2B

]
(15)

To determine A,B,C, first decompose the matrixH(0) by using singular value decomposition

to yield

H(0) = UΣV T = [Ur U t]


 Σr On−r

On−r Σt


 [Vr V t]T

= UrΣrV
T
r + UtΣtV

T
t

≈ UrΣrV
T
r

= [UrΣ1/2
r ][Σ1/2

r Vr] (16)

Comparison of Eqs.(15) and (16) established the following equalities

[UrΣ1/2
r ] = C
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[Σ1/2
r Vr] =

[
B A .... Al−2

]
(17)

The equalities are not unique, but they are balanced because both share the matrix Σ equally.

The matrix B is then determined by

B = The first column of [Σ1/2
r Vr] (18)

To determine the state matrix A, another Hankel matrix must be formed, i.e.,

H(1) =
[
Y2 Y3 .... Yl

]
(19)

This matrix is formed by deleting the first column of H(0) and adding a new column at the

end of the matrix. As a result, H(1) has the following relationship with the system matrices

A,B, and C

H(1) =
[
Y2 Y3 .... Yl

]

=
[
CAB CA2B .... CAl−1B

]

= CA
[
B AB .... Al−2B

]
(20)

Substituting Eq.(17) into Eq.(20) thus yields

A = [UrΣ1/2
r ]†H(1)[Σ1/2

r Vr]†

= Σ−1/2
r UT

r H(1)V T
r Σ−1/2

r (21)

The symbol † means pseudo-inverse. The orthonormal property of U and V shown in Eq.(3)

has been used to derive Eq.(21).

Assume that the state matrix A of order r has a complete set of linearly independent

eigenvectors ψ1, ψ2, ....., ψr with corresponding eigenvalues λ1, λ2, ....., λr which are not nec-

essarily distinct. Define Λ as the diagonal matrix of eigenvalues and Ψ as the matrix of

eigenvectors, i.e.,

Λ =




λ1

λ2

.

.

λr




(22)
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and

Ψ =
[
ψ1 ψ2 ... ψr

]
(23)

The identified A,B, and C can then be transformed to become Λ,Ψ−1B, and CΨ. The

diagonal matrix Λ contains the information of modal damping rates and damped natural

frequencies. The matrix Ψ−1B defines the initial modal amplitudes and the matrix CΨ the

mode shape at the sensor points. All the modal parameters of a dynamic system can thus

be identified by the three matrices Λ,Ψ−1B, and CΨ. The desired modal damping rates and

damped natural frequencies are simply the real and imaginary parts of the eigenvalues Λc,

after transformation from the discrete-time domain to the continuous-time domain using the

relation

Λc =
1
∆t

Log(Λ) (24)

AN EXAMPLE

1. POD model:

In this example J = 100 time steps and Equation (A2) is marched in time to determine Γ

for a unit step change in angle of attack. Identifying Γ with the flow variables, q, we form Q̂

and Φ. See Equations (1) and (6). From Eq.(6), one obtains the POD eigenvector V and the

corresponding POD eigenvalues of ΣTΣ. We normalize the POD eigenvectors V such that

[V ]T [V ] = [I]

The POD eigenvalues calculated are shown in Table 1. Examining these 100 eigenvalues,

one finds the first few modes are the most important. Also found are some very small

negative eigenvalues because of the numerical roundoff error in the eigenvalue calculation.

Note that the POD eigenvalues and eigenvectors are not the eigenvalues and eigenvectors of

Γ per se. The latter maybe determined from Eq.(A2) or approximately from the reduced

order model.
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From Eq.(2), we can determine the unitary matrix U ,

[U ] = [Q̂][V ][Σ]−1 (25)

with a normalization such that [U ]T [U ] = [I]. From Eq.(A2), we have

{Γ}t+1 + [A]−1[B]{Γ}t = [A]−1[T ]{w}t+1 (26)

From Eq.(9), We have

{Γ} = [Q̂]N×J [V ]J×n{a}n

Substituting Eq.(25) into Eq.(9), we have

{Γ} = [U ][Σ]{a} (27)

Substituting Eq.(27) into Eq.(26), we have

[U ][Σ]{a}t+1 + [A]−1[B][U ][Σ]{a}t = [A]−1[T ]{w}t+1 (28)

Pre-multiplying by the transpose of [U ][Σ] gives a reduced order model in terms of the new

unknowns, {a}.

([U ][Σ])T [U ][Σ]{a}t+1 + ([U ][Σ])T [A]−1[B][U ][Σ]{a}t = ([U ][Σ])T [A]−1[T ]{w}t+1 (29)

Thus a new three-dimensional time domain vortex lattice aerodynamic equation is given

by

{a}t+1
n×1 + [P ]n×n{a}t

n×1 = [R]n×N{w}t+1
N×1 (30)

where

[P ] = ([Σ]T [Σ])−1([U ][Σ])T [A]−1[B][U ][Σ]

and

[R] = ([Σ]T [Σ])−1([U ][Σ])T [A]−1[T ]

Generally, n << N , and thus a reduced order time domain equation is obtained. For the

present example, N = 645 and n ≤ 20. Once {a} is determined from Eq.(30), the {Γ}t and

{Γ}t+1 can be determined from Equation (26) and the total lift coefficient of the delta wing

is calculated using Eq.(A4).
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Figure 2 shows the total lift coefficient of the delta wing vs nondimensional time, τ , as

determined from the full vortex lattice model i.e , using Eq.(A2) with N = 645.

Figure 3 shows the total lift coefficient of the delta wing vs nondimensional time, τ , as

determined from the reduced order model for various sizes of the reduced order model, i.e.

n = 1, 5 and n = 20, using Eq.(30).

The reduced order model results are very close to the result using the full vortex lattice

model for the steady state, τ → ∞ even for n = 1. These results are consistent with those of

Table 1. As seen from this table, the POD eigenvalue of the first mode is significantly larger

than the others. So there is a single dominant mode and all others have a relatively small

contribution to the total lift coefficient. However more POD modes are required to capture

the dynamics of the flow model for shorter times, say τ < 1, as shown in Figure 3.

The aerodynamic eigenvalues of the vortex lattice model may be determined from Eq.(26)

and an approximation to these eigenvalues may be determined from Eq.(30) by setting the

right hand sides to zero and determining the condition for non-trivial solutions in the usual

way. Results from these calculations will be compared to those obtained from the system

identification method in the following discussion.

2. System identification:

Using the time history for the vortex strengths of the vortex lattice model at each grid point,

the system identification procedure described earlier was used to construct a dynamical model

of this system. By using all the information of the original model we can be sure that we will

reproduce these same time histories to some specified accuracy and that is indeed the case.

Within plotting error, the results for the time history of the original vortex lattice model

and that of the identified model are identical.

More interesting is the number of states required in the system identification model to

achieve this accuracy and how well the eigenvalues of the identified model agree with those

of the original model. It turns out that the number of states in the identified model is about

40, i.e. of the same order as the number of states required in the POD model to reproduce
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the essential dynamics of the original vortex lattice model.

It has been shown in previous work that the dominant eigenvalues of the vortex lattice

model may be represented by the POD modes. In Figure 4 we show a comparison between

the eigenvalues determined from the full vortex model and those determined from the system

identification model. As is seen the agreement between the two results is excellent for the

corresponding eigenvalues. The identified model in fact has represented the eigenmodes in

the dominant branch of the eigenvalue distribution of the original vortex lattice model and

done so with a high degree of accuracy.

The dominant branch of the eigenvalue distribution corresponds to the eigenmodes with

a spanwise pressure distribution similar to that for the lift on a wing at steady angle of

attack. Other branches of the eigenvalue distribution correspond to higher spanwise modal

forms.

A system identification (SID) model for an unsteady aerodynamic flow has been created

for several wing motions or gust excitations and corresponding aerodynamic responses. These

models were derived from numerical simulations using a vortex lattice (VL) model for the

delta wing with 55 vortex elements on the wing and 300 vortex elements in the wake (e.g.

km=kn=10, kmm=40 as shown in Fig. 1). In each case, the flow about the wing is excited

by a certain type of prescribed downwash at the wing grid points, w(t). The numerical VL

model produced vortex strengths at the grid points of the wing and in the wake, Γ(t), and

the corresponding pressure distribution on the wing, p(t). These data were then used as

input for the SID code.

The excitations to the flow that have been considered are

1) step angle of attack, w(t) = const for t > 0,

2) sharp edge gust, w(t − x/u) = const for (t − x/u) > 0,

3) frozen gust of changing frequency,

w(t − x/u) = const × sin(ω(t − x/u)2/2T )

such a gust is sometimes called a swept gust, and finally
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4) random downwash (w at each grid point and at every time step is a random number).

First, the SID model was used to reproduce the time histories of the vortex strength

(on the wing and in the wake) for 100 time steps. Results obtained from the SID model

were almost identical to those of the original VL model. The plots of such time histories are

not provided here, because one would not be able to see the difference in the time series of

the original data and the time series obtained via SID. However, to quantify the differences

between VL and SID outputs an error, δ, defined as δ = 100%|Q − y|/|Q| was used, where
the norm |X| is defined to be the largest singular value of X. In this case, both Q (VL) and

y (SID) are 100 × 355 rectangular matrices (100 time steps and 355 degrees of freedom). For

the above mentioned aerodynamic problems, and given the vortex strengths everywhere, the

error was less than 0.05%. Moreover, using the VL time series for the vortex strengths only

on the wing, the SID model reproduced them with almost the same accuracy – the largest

(among the aforementioned cases) error was 0.1%. The number of singular values retained in

the identified model varied from 60 to 90 for the cases when vortex strengths were provided

only on the wing and from 60 to 160 for the cases when the SID used vortex strengths both

on the wing and in the wake. (The number of singular values kept was such that the ratio

of the largest singular value to the smallest one kept was 10−12.)

Next the ability of such a SID model to capture the eigenmodes of the original VL system

and especially the dominant eigenmodes was studied. Here again, all the information on the

wing and wake was used initially, and then the information only on the wing was used to

obtain the eigenvalues. The former case is shown in Figures 5 and 6 and the latter in Figure 7.

Here the original VL eigenvalues are shown as circles and the eigenvalues obtained from the

SID model are indicated by crosses. In the case of full information, the dominant eigenvalue

branch for the case of a step angle of attack (Fig. 5a) and also a sharp edge gust (Fig. 5b)

is captured nicely (36 singular values and 57 singular values were used respectively in the

SID model). For the case of a swept gust (Fig. 5c) and random downwash (Fig. 5d), the

SID model produced sets of eigenvalues that do not agree well with the original ones from

the VL code (164 singular values and 99 singular values were used respectively in the SID

model). However, for the problem of the random downwash, increasing the length of the

time history that was used as input to the SID model code from 100 steps to 1000 steps lead

to a set of eigenvalues that is in very good agreement with the dominant branch as shown
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in Figure 6 (250 singular values were used).

When the vortex strengths only on the wing were used for some initial selection of

parameters in the SID model (see Fig. 7), interestingly the dominant branch of eigenvalues

is recovered not only for the step angle of attack (Fig. 7a) and the sharp edge gust (Fig.

7b), but also for the case of the swept gust (Fig. 7c) and random downwash (Fig. 7d),

even though in the last case the dominant branch identified by the SID model is somewhat

”off target”. By looking at the Figure 7 one might conclude that providing vortex strength

information only on the wing in these cases is sufficient for finding the distinct dominant

eigenvalue branch. However, one should not conclude that using vortex strength information

on the wing only is actually better than using information about vortex strengths both on

the wing and in the wake.

By running the SID code for various parameter choices and for a certain number of

retained singular values, different lengths of time series, using information on the wing only

vs information everywhere, etc, the authors have found, firstly, that the set of eigenvalues

from the SID model could either include the ”correct” dominant eigenvalue branch or could

be a different set of eignvalues (which, by the way, does not prevent the SID model from

reproducing the original time series with excellent agreement); secondly, it was concluded

that if there is a distinct branch of eigenvalues found from the SID model, it is most likely

to be similar to the dominant branch in the original VL model.

Now another case will be considered. In the context of wing tunnel or flight experiments,

one is also interested in what can be identified from the measured data such as pressure.

So using numerically obtained pressure values over the wing, the SID model was used to

reproduce pressure time histories. Just as in the case of vortex strength data on the wing

only, 55 pressure time histories of 100 time steps were input to the SID code. Using 30 to

40 singular values, the error between the original and identified time histories of pressure

remained less than 1%.

One could argue that it may be impractical to use such a large amount of sensors on the

wing to apply SID models. Thus, next only a portion of the pressure data on the wing was

used. Different sensor positions were considered. A discussion of the various downwash and

sensor locations on such a wing is ommitted here. For the current discussion, leading edge
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elements from the root to the tip of the wing were taken, as they appear to be a very good

choice for system identification purposes. In Figure 8, results for the pressure time history at

the tip element of the wing are shown for the case when 10 measurements (still numerically

simulated, of course) of the downwash and pressure time history (100 time steps) along the

leading edge were supplied to create the SID model. Using from 50 to 90 singular values for

the four aerodynamic loading problems, the previously defined error ranged from 0.002% to

1.8%.

However, using pressure data only, no success has yet been realized in approximating the

eigenvalues of the original VL model. This is a subject of continuing investigation.

CONCLUDING REMARKS

It has been shown that a modal representation of the aerodynamic forces acting on an

oscillating wing has several attractive features that may be exploited. As has been shown

earlier, starting from a numerical model of the fluid, here taken to be a vortex lattice model,

the fluid model may be efficiently represented in terms of Proper Orthogonal Decomposition

(POD) modes. However it was also shown that using standard system identification tech-

niques for linear dynamical systems, an identified system model may also be constructed

using data from the numerical model. Both the POD modes and the system identification

method lead to substantially reduced order models of the flow field of comparable dimen-

sions. And therefore both provide highly efficient computational models relative to the

original [vortex lattice] numerical model.

In principle the POD method may also be used for nonlinear dynamical systems. How-

ever much work has yet to be done to implement this capability in the context of unsteady

aerodynamic models. The system identification methodology for nonlinear dynamical sys-

tems is still a research frontier and no general methods are yet available. On the other hand

the systems identification approach may be useful when only partial flow field data are avail-

able, e.g. from a wind tunnel experiment, and this aspect is currently under investigation

by the authors.

Finally it is noted that although a particular numerical model of the fluid was used in the
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present paper, i.e. a vortex lattice model, no especial difficulty is expected in extending these

methods to other Computational Fluid Dynamics (CFD) models. Indeed the beneficial use

of POD for a variety of CFD models has been shown in [1-3]. Since the system identification

model only requires time histories or Fourier Series (frequency domain) data from such a

CFD model, the extension to any time linearized CFD model is straightforward. Indeed

even if the original CFD model is not time linearized per se, the code can be run for small

wing motions to simulate numerically time linearized conditions.
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Table 1: Eigenvalues, σn

σ1−25 σ26−50 σ51−75 σ76−100

0.31168E+03 0.51654E+00 0.82697E-05 -0.33688E-05

0.33737E+02 0.50582E+00 -0.80430E-05 -0.30680E-05

0.39184E+01 0.49650E+00 -0.77611E-05 -0.26678E-05

0.31482E+01 0.48854E+00 -0.72553E-05 -0.27129E-05

0.25025E+01 0.48179E+00 0.75330E-05 -0.22659E-05

0.20812E+01 0.47621E+00 0.72555E-05 -0.16534E-05

0.17607E+01 0.47171E+00 -0.69035E-05 0.32531E-05

0.15281E+01 0.46827E+00 -0.65890E-05 0.29655E-05

0.13464E+01 0.46584E+00 -0.62088E-05 0.28340E-05

0.12051E+01 0.46439E+00 -0.64251E-05 0.25623E-05

0.10909E+01 0.15028E+00 -0.57141E-05 0.24380E-05

0.99799E+00 0.85771E-02 0.65583E-05 -0.13306E-05

0.92088E+00 0.84648E-04 0.64960E-05 -0.11599E-05

0.85612E+00 -0.17071E-04 0.60496E-05 -0.84823E-05

0.80130E+00 0.13413E-04 0.57069E-05 -0.46961E-05

0.75427E+00 0.12234E-04 -0.52226E-05 -0.34102E-06

0.71385E+00 -0.10651E-04 -0.48201E-05 -0.12280E-06

0.67867E+00 -0.10369E-04 -0.42629E-05 0.18361E-05

0.64813E+00 0.11271E-04 0.49989E-05 0.17704E-05

0.62129E+00 0.10661E-04 0.47778E-05 0.14315E-05

0.59783E+00 -0.90705E-05 0.47381E-05 0.12146E-05

0.57712E+00 0.99622E-05 0.43455E-05 0.10583E-05

0.55896E+00 0.96568E-05 0.39997E-05 0.44381E-06

0.54293E+00 0.90764E-05 -0.37350E-05 0.49844E-06

0.52889E+00 -0.85099E-05 -0.35918E-05 0.60061E-06
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Figure 1: Numerical grid for delta wing-plate using vortex lattice aerodynamic model
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Figure 2: The total lift coefficient of the delta wing vs nondimensional time, τ , for all modes
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Figure 3: The total lift coefficient of the delta wing vs nondimensional time, τ , for n = 1, 5
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Figure 5: Original eigenvalues from VL code (◦) and eigenvalues from system ID model

obtained using vortex strengths data on the wing and in the wake (×): (a) step angle of

attack, (b) sharp edge gust, (c) swept gust, and (d) random case.
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Figure 6: Original eigenvalues from VL code (◦) and eigenvalues from system ID model

obtained using vortex strengths data on the wing and in the wake (×) for the random case

when time series length is increased 10 times to 1000 time steps.
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Figure 7: Original eigenvalues from VL code (◦) and eigenvalues from system ID model

obtained using vortex strengths data on the wing only (×) : (a) step angle of attack, (b)

sharp edge gust, (c) swept gust, and (d) random case.
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Figure 8: Time series of the pressure at the tip element. Original VL code data (solid line

with ◦’s) and resulted time series from system ID model obtained using pressure on only 10

leading edge elements as input (dotted line with ×’s): (a) step angle of attack, (b) sharp

edge gust, (c) swept gust, and (d) random case.
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