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Nanotube Tunneling as a Consequence of Probable Discrete Trajectories 

Daryl C. Robinson 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

It has been recently reported that the electrical charge in 
a semiconductive carbon nanotube is not evenly distributed, 
but is divided into charge “islands [1,2].” A clear 
understanding of tunneling phenomena can be useful to 
elucidate the mechanism for electrical conduction in 
nanotubes.  This paper represents the first attempt to shed 
light on the aforementioned phenomenon through viewing 
tunneling as a natural consequence of  “discrete 
trajectories.”  The relevance of this analysis is that it may 
provide further insight into the higher rate of tunneling 
processes, which makes tunneling devices attractive [3].  In 
a situation involving particles impinging on a classically 
impenetrable barrier, the result of quantum mechanics that 
the probability of detecting transmitted particles falls off 
exponentially is derived without wave theory. This paper 
should provide a basis for calculating the charge profile 
over the length of the tube so that nanoscale devices’ 
conductive properties may be fully exploited.  
 

1 INTRODUCTION 

This introduction serves as an outline for the paper.  The 
idea of the “warp tunnel” is essential for subsequent 
calculations in this paper.  Though it sounds futuristic, the 
idea is straightforward and sound.  The warp tunnel is 
introduced in Figure 1. Its quantitative properties are 
explored in Figure 2, which attempts to provide insight into 
the higher rate of tunneling processes.  Figure 3 hints at the 
explanation of the charge island phenomenon, and also 
provides a basis for understanding subsequent calculations.  
To show the potency of this analytical model, we calculate 
the transmission probability of a beam of electrons 
impinging on a classically impenetrable barrier, the 
scenario shown in Figure 4.  Having successfully obtained 
the result, we look within the analysis to obtain the 
explanation for charge islands.   

2 BACKGROUND AND MOTIVATION 

We begin with consideration of Figure 4.  Electrons 
emitted from a source S impinge on a potential barrier.  To 
penetrate the barrier, they must tunnel a distance a while 
bridging the distance r.  We wish to find p(L), or the 
probability of bridging the distance r while traveling only 
L = r – a.  In Figure 5, we visualize distance r as consisting 
of warp tunnels of differing constituents. Uncharged 
particles are shown as white while electrons are black.   

 
Although the number of electrons in each warp tunnel 
increases from top to bottom in this figure, such an 
arrangement is solely for conceptual simplicity. The 
number of electrons pictured in each warp tunnel 
symbolizes the number of electrons involved in the 
momentum transfer to the outgoing electron in each warp 
tunnel.  It is assumed that the greater the involvement of 
uncharged particles in the momentum transfer, the faster the 
transfer will occur, owing to the greater size of the 
uncharged particles.   

Figure 6 shows that the uncharged particles move but 
little in a chain reaction or momentum transfer, but the 
electrons, being smaller, must move more to propagate the 
chain reaction. When particle A, in Figure 6, is inserted into 
the warp tunnel in (I), its representative exits almost 
immediately.  The effective distance traveled by A is on the 
order of its diameter. However, when A is inserted into 
warp tunnel (II), its effective distance traveled is greater. 

2.1 Model Verification Calculation 

To formalize the calculation, it is assumed that the mean 
free path of an electron is d, while that of an uncharged 
particle is 0.  In warp tunnel (a) of Figure 5, it is presumed 
that an incoming electron will travel d once it enters the 
tunnel, collide with an uncharged particle, which will then 
transfer that momentum via other uncharged particles to an 
outgoing electron, which will exit the warp tunnel almost 
immediately after the first electron entered it.  As depicted 
in Figure 3, such a scenario becomes increasingly 
improbable as the length of the warp tunnel increases.  In 
warp tunnel (b) of Figure 5, since the mean free path of 
uncharged particles is 0 and the current flows to the left, we 
may assume that the electron inside the tunnel is flushed to 
the right of its adjacent uncharged particle on its left.  That 
electron then having a mean free path of d has to its 
immediate right a distance d of intervening space separating 
it from the next uncharged particle in the tunnel.  So the 
incoming electron travels a distance d once it enters the 
tube, transfers its momentum to the uncharged particles, 
which cause the middle electron to travel through a distance 
d, which was to its right. It collides with uncharged 
particles, which cause an electron to be ejected from the 
warp tunnel. The amount of time it takes to eject an electron 
after one has entered in warp tunnel (b) is about twice that 
in warp tunnel (a).  A convenient abstraction is to regard an 
electron entering a tunnel as appearing for a few instants, 
disappearing, and reappearing at a point further downstream 
the tunnel. The more “appearances” an electron makes in a 
tunnel, the longer its trip through the tunnel. Here enters the 
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notion of a “discrete trajectory.”  The electron does not 
travel continuously through the tube, but successively 
appears at subsequent points in the tube and disappears 
between those points.   

In Figure 5, i - 1 electron mean free path domains are 
evenly distributed throughout the warp tunnel. This 
assumption is true on average.  For a warp tunnel with 
L = i d, we calculate p(L) as follows.  To choose i - 1 
domains out of the interval [-r,0] as free path positions for 
the i - 1 electrons, we recognize that the number of points 
from which to choose is n = r/d.  The number of ways of 
obtaining a warp tunnel with L = i d, is n (n – 1) (n – 2) 
…(n – (i – 2)) = n!/(n – (i – 1))!  We use Stirling’s Formula 
to simplify. 
 
p(L) ∝  1/(n – (i – 1))!  

 
p(L) ∝  e– [(n –  i + 2) + (n – i + ½) Ln(n – i + 2)] . 
 
L = i d ⇒ i = L/d, n – i = (r - L)/d. 

 
p(L) ∝ G’ ek L. 

 
The probability of detecting electrons on the other side of 
the barrier requires L = r – a, and is given by: 
 
p(L) ∝ e– [a/d + (a/d + ½) Ln(a/d + 2)] . 

 
If a/d >> 1, p(L) → 0 very quickly, but if a/d ≈ 1, 

 
p(L) = G e-k’ a, 
 
which falls off exponentially with increasing barrier width 
a.  G and the k are independent of  r. 

3 MODEL EXPLOITATION 

The calculation of the charge separation is lengthy and 
involved.  Consequently, only general remarks, an outline 
of the calculation and reporting of those results appear here.  
The idea behind charge islands is closely associated with 
that of mean free path. A free-floating electron travels by a 
certain average amount before it collides with another 
particle, possibly dislodging an electron and imparting it 
with its motion. The electron need not directly bump into 
another electron though. It may transfer its motion by 
bumping into several intervening neutral particles.  
Tunneling viewed in this light is to induce the motion of a 
distinct, yet otherwise indistinguishable, particle indirectly 
via intervening, and possibly different, particles—much in 
the same way as making a combination shot in pool.  
Charge islands are formed at regular intervals due to the 
chain-reaction creation of charged particles a certain mean 
distance from an immediately upstream impulse due to the 
indirect motion of charged particles there.  We may think of 
a length L nanotube as a warp tunnel containing i electron 
islands.  These islands will be evenly spaced on average.  In 

a nanoscale metallic conductor, the spacing of the charge 
islands is so close that the charge appears to be uniformly 
distributed.  However, in a nanoscale semiconductor, the 
spacing of charge islands increases, revealing charge 
granularity.   

3.1 Spacing Calculation Outline 

Since charge is segregated into islands, to model this 
circuit, an appropriate technique seems to be that of the 
series RC circuit. A capacitor plate represents a charge 
island; the spacing between the plates of the capacitor 
represents the neutral gaps between adjacent charge islands.  
The capacitors are modeled as having equal capacitance 
while R represents the internal resistance of the circuit.  
Ordinarily, we would not expect a capacitor to conduct a 
DC current, but if the plate spacing is sufficiently close a 
tunneling current will flow in the same way that electrons 
will pass through the barrier shown in Figure 4 if a is small 
enough. When tunneling is viewed in this new light, a 
tunneling current can readily transmit through 40 nm 
barriers. 

Consider the warp tunnel in the top of Figure 1.  
Ignoring its coloring, let the particle entering the tunnel be a 
photon emitted by an electron, not displayed, to its left.  
Assume that the warp tunnel spans a barrier of width a.  
The particle emerging from the right side of the warp tunnel 
may be a photon that will be absorbed by an electron, not 
displayed, on the right side of the barrier.  The outgoing 
photon thereby imparts that electron with the motion 
originally possessed by the other electron on the left side of 
the barrier.  In these calculations, it is assumed that the 
photon has a width, denoted lt, directly proportional to its 
energy or frequency. The proportionality constant is derived 
from physical constants.   

Assuming the warp tunnel in Figure 1 is full, the 
entering photon need only move into the tunnel an amount 
lt when a representative photon will move out of the tunnel.  
The electron, which originally emitted the photon, has 
effectively bridged the distance across the barrier by 
“traveling” only a distance lt << a.  The effective length of 
the barrier is only lt(f), or the width of the photon of 
frequency f perpetuating the motion.  This analysis explains 
both the optical and quantum mechanical barrier 
penetration phenomena shown in Figure 7.  In general, it is 
not the selfsame electron that impinges on the barrier in 
Figure 7.a that emerges on the other side.  Likewise, it is 
not the selfsame photon that enters the prism on the left that 
is detected beyond the prism on the right. 

This model allows one to conclude that the effective 
length of the barrier may be given by the width, lt(f), of a 
photon within the barrier.  To find the probability 
distribution function, f(L), of the length of the barrier, we 
use the Planck distribution function, which gives the 
thermal average number of photons in a single mode of 
frequency. For the temperature variable, we use room 
temperature.  The majority of the frequencies are smaller 
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than that of visible light; hence, f(L) ∝ 1/L, where L is a 
function of frequency. 

We return now to our classical RC circuit model.  When 
the power is turned on in a classical DC RC circuit, we 
obtain a transient solution:  a current that exponentially 
decays in time.  However, if the capacitor plate spacing is 
not fixed, but is exponentially decreasing with increasing 
time, we find that the current through the capacitor is 
essentially constant and inversely exponentially depends on 
the original plate spacing.  The probability distribution 
function, g(L), of the length L between the capacitor plates, 
or the plate spacing, must give g(L) ∝ 1/L to explain a plate 
spacing that exponentially decays with time.  This 
remarkable and highly convincing result shows that 
harmony may be obtained between standard tunneling 
current formulae and that predicted by DC RC circuit 
analysis by assuming that the tunneled current follows a 
discrete trajectory across the barrier.   

Detailed calculations were performed to obtain the 
coefficient of time in the decreasing exponential factor 
involved in the plate spacing of the capacitor.  This value, 
along with the internal resistance of the circuit, is needed to 
resolve the formula for the tunneling current through the 
nanotube circuit or the tunneling resistance of the nanotube. 

 
 
This model reasonably predicts the charge separation 

contingent on one measurement, which was not reported in 
the literature discussing this phenomenon:  the internal 
resistance of the circuit when the semiconducting nanotube 
is short-circuited by a metallic nanotube or another 
extremely low resistance shunt.  So, if the power supply 
were shut off, and the two nanotube terminals, gold in one 
test and platinum in another, were short-circuited by an 
extremely low resistance shunt and a highly sensitive 
ohmmeter were placed in series, one lead at the positive 
terminal of the power supply and one at the negative 
terminal of the power supply, the resistance, R, that the 
ohmmeter would read for the two scenarios reported in 
[2]—keeping all things constant such as temperature, the 
length of the tubes, the length and composition of the leads 
to the tubes, and identical final charge spacing—is needed. 

An equivalence is established which allows calculation 
of the charge separation based on traditional circuit 
parameters yielded readily from macroscopic measurements 
and the literature.  We equate the tunneling resistance of the 
entire nanotube with no islands at t = 0 when the power 
supply is switched on to that which would result from an 
arbitrary number n of charge islands which are manifested 
at t > 0.  Solving for n yields the number of charge islands, 
which the model says should be evenly spaced.  Knowledge 
of the length of the nanotube gives the separation of the 
charge islands.  The charge separation for various R has 
been calculated and is presented below:   

 
 

4 RESULTS 

Results are given in the form:  (R in Ohms, charge 
island spacing in nm).  For the 650 nm tube, (0.0001270, 
37.7), (0.0001316, 42.6), and (0.0001292, 40).  For the 750 
nm tube, (0.0001370, 34.4), (0.0001408, 37.82), and 
(0.0001389, 36).  These resistances seem in range.  They 
are just what one would expect of the resistances of the 
leads in these experiments. 

5 REMARKS 

A general observation about tunneling is that as the 
mass or equivalent energy of a tunneled particle decreases, 
the greater its transmission probability. When we apply this 
analysis to the optical experiment in Figure 7, we see that d 
is on the order of the wavelength of the incident light.  
Observe that lower frequency electromagnetic radiation has 
greater penetrating ability, which also may be related to the 
size of its photons.  As a final comment, a standing wave 
may be thought of as existing inside the potential barrier in 
Figure 4.  Analogously, this “island,” phenomenon may 
also exist on a macroscopic scale and may be manifested 
with light in microwave ovens, which often do not heat 
food uniformly, but leave hot and cold spots in food. 

6 CONCLUSIONS 

A theoretical framework was introduced to better 
understand tunneling.  It was successfully applied to 
determine the transmission probability of a stream of 
electrons incident on a potential barrier.  An appeal was 
made to the established model to help explain the reported 
phenomenon of charge separation in carbon nanotubes. 

Calculations have been performed which show that 
while to calculate the capacitance above the nanoscale, the 
plate spacing d(t) of a capacitor should be a fixed constant, 
independent of time, at the nanoscale, d(t) rapidly decreases 
as a function of time in accordance with the probability 
distribution function—predicted by this theory—of the 
lengths of the discrete trajectories of electrons bridging the 
gap of the capacitor.  When this calculation is performed, 
an equation—identical in form to that of Giaever—yielding 
the current through the circuit as an inverse exponential  
function of the original plate spacing of the capacitor is 
obtained.  This equation is then used to obtain the spacing 
of the charge islands.  The fact that the classical equations 
for a series RC circuit can still be utilized on the nanoscale 
by assuming the plate spacing of the capacitor is shrinking 
by a function of time which is predicted by this theory is 
strong proof alone that this theory is sound. 

General remarks about tunneling with light and 
electrons were made with the implication that the 
phenomenon of tunneling is more ubiquitous than perhaps 
generally thought. The theoretical model seems accurate 
and was inspired by a more general computer program 
written by the author. 
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